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Pattern-Division Multiplexing for Multi-User
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Abstract— In recent years, thanks to the advances in
meta-materials, the concept of continuous-aperture MIMO
(CAP-MIMO) is reinvestigated to achieve improved communi-
cation performance with limited antenna apertures. Unlike the
classical MIMO composed of discrete antennas, CAP-MIMO
has a quasi-continuous antenna surface, which is expected to
generate any current distribution (i.e., pattern) and induce
controllable spatial electromagnetic (EM) waves. In this way,
the information is directly modulated on the EM waves, which
makes it promising to approach the ultimate capacity of finite
apertures. The pattern design is the key factor to determine
the communication performance of CAP-MIMO, but it has not
been well studied in the literature. In this paper, we develop
pattern-division multiplexing (PDM) to design the patterns for
CAP-MIMO. Specifically, we first study and model a typical
multi-user CAP-MIMO system, which allows us to formulate
the sum-rate maximization problem. Then, we develop a general
PDM technique to transform the design of the continuous
pattern functions to the design of their projection lengths on
finite orthogonal bases, which can overcome the challenge of
functional programming. Utilizing PDM, we further propose a
block coordinate descent (BCD) based pattern design scheme to
solve the formulated sum-rate maximization problem. Simula-
tion results show that, the sum-rate achieved by the proposed
scheme is higher than that achieved by benchmark schemes,
which demonstrates the effectiveness of the developed PDM for
CAP-MIMO.

Index Terms— Continuous-aperture MIMO (CAP-MIMO),
large intelligent surface (LIS), reconfigurable intelligent surface
(RIS), holographic MIMO (H-MIMO), electromagnetic informa-
tion theory (EIT).

I. INTRODUCTION

FROM 3G to 5G, the system performance of wireless
communications has been greatly improved by the wide

use of multiple-input multiple-output (MIMO) [2], [3], [4].
Equipped with multiple discrete antennas with half-wavelength

Manuscript received 23 August 2022; revised 25 March 2023; accepted
3 May 2023. Date of publication 21 June 2023; date of current version
7 August 2023. This work was supported in part by the National Key Research
and Development Program of China under Grant 2020YFB1807201, in part
by the National Natural Science Foundation of China under Grant 62031019,
and in part by the European Commission through the H2020-MSCA-ITN
META WIRELESS Research Project under Grant 956256. An earlier version
of this paper was presented in part at the IEEE ICC’22, Gangnam-gu,
Seoul, South Korea, in May 2022 [DOI: 10.1109/ICC45855.2022.9839220].
(Corresponding author: Linglong Dai.)

The authors are with the Department of Electronic Engineering,
Tsinghua University, Beijing 100084, China, and also with the Beijing
National Research Center for Information Science and Technology
(BNRist), Beijing 100084, China (e-mail: zhangzj20@mails.tsinghua.edu.cn;
daill@tsinghua.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2023.3288244.

Digital Object Identifier 10.1109/JSAC.2023.3288244

Fig. 1. An example of CAP-MIMO based communication scenario.

spacing, MIMO is capable of enhancing the wireless trans-
missions by exploiting spatial multiplexing and diversity [5],
[6], [7]. Inspired by the potential benefits of MIMO with an
increasing number of antennas, exploring the ultimate trans-
mission performance of a limited MIMO aperture has attracted
extensive attention in the communication community. As an
ultimate MIMO structure with extremely dense antennas, the
concept of continuous-aperture MIMO (CAP-MIMO), which
is also called as holographic MIMO [8], [9], [10], [11],
[12], large intelligent surface (LIS) [13], [14], [15], [16],
or reconfigurable intelligent surface (RIS) [17], [18], [19],
is reinvestigated for wireless communications in recent years.

Unlike the classical MIMO composed of multiple discrete
antennas with half-wavelength spacing [2], [3], [4], by deploy-
ing a large number of sub-wavelength elements in a compact
space, CAP-MIMO takes the form of a quasi-continuous
electromagnetic (EM) surface [17]. Thanks to the recent
advances of highly-flexible reconfigurable antennas, some
early attempts at reconfigurable quasi-continuous apertures
have been made [20], [21], [22], [23]. For example, the authors
in [24] proposed a design method for synthesizing the binary
meta-hologram pattern implemented in a leaky waveguide that
can radiate signals towards a prescribed direction. Besides,
by densely deploying a large number of small metamaterial
elements based on electrical resonators, the research in [25]
reported a continuous-aperture metasurface to achieve high
array gain with limited size. In addition, the authors in [26]
realized a electric-driven metasurface, and the EM wave with
arbitrary polarization can be generated and radiated.

As shown in Fig. 1, an ideal CAP-MIMO is expected to have
full control freedom of generating any current distribution on
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its spatially-continuous surface [10], so that its radiated EM
waves can be artificially configured in a desired manner. In this
way, the information for receivers can be directly modulated on
the spatial EM waves and radiated to the physical space. Rely-
ing on this mechanism, the physical properties of spatial EM
waves can be sufficiently exploited [27], leading to extreme
spatial resolution [13, Fig. 5], high spectrum efficiency [14,
Fig. 7] [15, Fig. 4] and high energy efficiency [17, Fig. 4].
Thus, CAP-MIMO becomes a promising technology to satisfy
many challenging requirements of future wireless networks,
such as the wide in-building coverage, high-speed uplink
transmission, and high-accuracy localization [17].

A. Prior Works

Realizing an ideal CAP-MIMO has a long history in the
research field of micro-wave and photonics, dating back
to Wheeler’s work in 1965 [28] and Staiman’s work in
1968 [29], respectively. By deriving the eigenfunctions of
continuous-space EM channels, the capacity bound between
two continuous volumes was derived in [30] and [31]. The
recent works on CAP-MIMO include antenna design [25],
physical model [32], performance analysis [11], channel esti-
mation [8], and so on. For example, the authors in [28]
proposed to realize CAP-MIMO by exploiting the current
sheet made of tightly coupled dipole array and the monolayer
metallic made of magnetic particles. Then, to characterize the
propagation process of the EM waves, the authors in [32] mod-
eled the wireless channels between CAP-MIMO transceivers
as Gaussian random fields. Subsequently, the author in [13]
derived the analytical expressions of the spatial degrees of
freedom (DoFs) of CAP-MIMO, and the authors in [11] fur-
ther analyzed its near-field DoFs. Moreover, the authors in [8]
proposed to exploit the geometrical property of arrays to real-
ize the overhead-reduced channel estimation for CAP-MIMO.
By utilizing special beam structures, a CAP-MIMO channel
estimation scheme was proposed in [9], whose training over-
head and complexity do not scale with the number of elements.

The pattern, i.e., the current distribution on the continu-
ous aperture of CAP-MIMO, is the key factor determining
the CAP-MIMO performance [13]. To support the coherent
transmission of multiple data streams, it is necessary for
CAP-MIMO transmitter to adopt a series of distinguishable
patterns to carry different symbols [11], [12]. Specifically, the
authors in [11] considered a near-field line-of-sight scenario,
where one linear-aperture CAP-MIMO transmitter serves
one linear-aperture EM-wave receiver. By adopting a series
of square-wave functions to generate the patterns, the EM
waves carrying different symbols can be radiated towards
different spatial angles. Furthermore, the authors in [12]
considered a similar near-field line-of-sight scenario with a
couple of linear-aperture CAP-MIMO transceivers. Particu-
larly, a wavenumber-division multiplexing (WDM) scheme
was proposed to directly generate the patterns by Fourier
basis functions. In this way, the transmitted symbols belong-
ing to different streams are modulated on different spatial
wavenumbers of radiated EM waves and transmitted, which is
similar to the frequency-division multiplexing in conventional
communications.

From the above discussions, we can find that, most exist-
ing works have directly adopted the patterns generated by
given special functions to realize coherent transmission for
CAP-MIMO [11], [12]. Although these schemes can improve
the performance of CAP-MIMO to some extent, they only
work efficiently in some special communication scenarios,
such as single-user, linear-aperture, and/or near-field trans-
missions. To support CAP-MIMO in general scenarios with
complex propagation environment and multiple distributed
receivers, it is essential to design the patterns flexibly accord-
ing to the continuous channel functions, which resembles the
space-division multiplexing in conventional MIMO systems.
Unfortunately, to the best of our knowledge, such a flexible
and general pattern design scheme has not been well studied
in the literature. One possible reason may be the mathematical
challenge introduced by the design of continuous pattern func-
tions of CAP-MIMO, which is usually non-convex functional
programming [33] and thus difficult to be solved by the
classical discrete signal processing techniques for conventional
MIMO systems.

B. Our Contributions

To fill in this gap, in this paper,1 we develop a general
pattern-division multiplexing (PDM) technique to flexibly
design patterns for multi-user CAP-MIMO. Our contributions
are summarized as follows.
• Based on the EM propagation principle, we study and

model a typical multi-user CAP-MIMO based com-
munication system, where one CAP-MIMO transmitter
with planar aperture serves multiple users coherently.
This allows us to formulate the sum-rate maximiza-
tion problem to optimize the CAP-MIMO patterns,
and it also provides a possible framework for other
technical problems in multi-user CAP-MIMO sys-
tems, such as channel estimation and energy efficiency
optimization.

• We develop a general PDM technique to flexibly design
the patterns of CAP-MIMO according to the knowledge
of continuous channel functions. The key idea is to
use series expansion to project the continuous pattern
functions of CAP-MIMO onto an orthogonal basis space,
thus the design of continuous pattern functions is trans-
formed to the design of their projection lengths on finite
orthogonal bases. In this way, the challenging problem
of optimizing continuous patterns of CAP-MIMO can be
addressed.

• Utilizing the developed PDM technique, we further pro-
pose a block coordinate descent (BCD) based pattern
design scheme to solve the formulated sum-rate maxi-
mization problem for multi-user CAP-MIMO. Simulation
results show that, the multi-user patterns designed by the
proposed scheme are almost mutually orthogonal, and the
sum-rate achieved by the proposed scheme is higher than
that achieved by benchmark schemes.

1Simulation codes are provided to reproduce the results presented in this
article: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.
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C. Organization and Notation

Organization: The rest of this paper is organized as
follows. Section II introduces the system model of multi-
user CAP-MIMO and formulates the problem of sum-rate
maximization. The general PDM technique to address the
continuous patterns of CAP-MIMO is developed in Section III,
and the specific pattern design scheme to solve the formulated
problem is proposed in Section IV. Simulation results are
presented in Section V to validate the effectiveness of the
proposed scheme. Finally, conclusions are drawn and future
works are discussed in Section VI.

Notation: C, R, R+, and Z denote the set of complex,
real, positive real, and integer numbers, respectively; [·]−1,
[·]∗, [·]T, and [·]H denote the inverse, conjugate, transpose, and
conjugate-transpose operations, respectively; ∥ · ∥ denotes the
Euclidean norm of its argument; ∥ · ∥F denotes the Frobenius
norm of its argument; det| · | denotes the determinant of its
argument; Ez{·} is the expectation operator with respect to the
random vector z; R{·} denotes the real part of its argument;
ln(·) denotes natural logarithm; rect (·) is the generalized
rectangular function whose value takes one/zero when the
condition in its argument is true/false; mod(a, b) denotes the
remainder of a/b; ∇z denotes the first-order partial derivative
operator with respect to z; surfaces are indicated with calli-
graphic letters S and |S| denotes the Lebesgue measure of S;
IL denotes an L× L identity matrix.

II. SYSTEM MODEL AND PROBLEM
FORMULATION FOR CAP-MIMO

In this section, we study and model a typical multi-
user CAP-MIMO based communication system, where one
CAP-MIMO transmitter with planer aperture simultaneously
serves K users in the downlink. Specifically, we first intro-
duce the system model of a CAP-MIMO transmitter in
Subsection II-A. Then, the EM channels between the trans-
mitter and the users are illustrated in Subsection II-B. Next,
the EM waves at the users are modeled in Subsection II-C.
Finally, the problem of the sum-rate maximization for multi-
user CAP-MIMO system is formulated in Subsection II-D.

A. CAP-MIMO Transmitter

As shown in Fig. 2 (a), we consider a CAP-MIMO trans-
mitter with aperture ST of area AT = |ST| working in a
3-D homogeneous medium. In the ideal case, CAP-MIMO
has an almost continuous antenna aperture, which is able to
generate any current distribution on its continuous surface for
wireless communications [10], [11], [12], [13]. Let j(s, t) ∈
R3 denote the monochromatic current density at a generic
location s := (sx, sy, sz) ∈ R3 and time t. The ideally
controllable current distribution at the CAP-MIMO transmitter
can be written as

j(s, t) = ℜ
{
j(s)e−j2πft

}
, s ∈ ST, (1)

where f is the current frequency. For simplicity but without
loss of generality, we assume that the communication system
works in narrowband, which is exactly the well-known and
widely-used time-harmonic assumption in EM analysis [34].

This allows us to ignore the time-related component e−j2πft

and focus on the time-independent current density j(s) ∈ C3.
Consider that the CAP-MIMO transmitter simultaneously

serves K tri-polarization receivers (i.e., K users) in the
downlink.2 Let x ≜ [x1, · · · , xK ]T ∈ CK denote the symbols
transmitted to K users, respectively. We assume that these
symbols have the normalized power, i.e., Ex

{
xxH

}
= IK .

Then, similar to the conventional MIMO beamforming [35],
the symbols x to be transmitted are modulated on K different
CAP-MIMO patterns {θk (s)}K

k=1, which aims to make these
symbols orthogonal at different users as much as possible, and
thus high channel capacity can be achieved. For simplicity,
we assume that CAP-MIMO employs linear superposition to
combine multiple information-carrying patterns {θk (s)}K

k=1

for coherent transmission, thus the combined current distribu-
tion j(s) on the CAP-MIMO aperture can be modeled as

j(s) =
K∑

k=1

θk (s) xk, s ∈ ST, (2)

where pattern θk (s) ∈ C3 is the component of current density
that carries symbol xk.

B. Electromagnetic Channels

To model the radiated information-carrying EM waves in
space, we define e(r) ∈ C3 as the electric field at point r :=
(rx, ry, rz) ∈ R3, which is induced by the current distribution
j(s) on the CAP-MIMO aperture. According to Maxwell’s
equations, the current distribution j(r′) and the electric field
e(r′) satisfy the following inhomogeneous Helmholtz wave
equation [34]:

∇×∇× e (r′)− κ2
0e (r′) = jκ0Z0j (r′) , (3)

where r′ ∈ R3 is any arbitrary point in space; κ0 is the spatial
wavenumber; and Z0 is the intrinsic impedance of spatial
medium, which is 376.73 Ω in free space.

Then, to explicitly express the relationship between the
current distribution j(s) at the transmitter and the electric field
e(r) at the receiver, Green’s method [34] is utilized to solve
(3). By introducing channel function G(r, s) ∈ C3×3, the
electric field e(r) at point r can be induced from (3) as

e(r) =
∫
ST

G(r, s)j(s)ds, (4)

where channel function G(r, s) plays a role similar to the
channel matrix in classical MIMO systems. From the perspec-
tive of mathematics, G(r, s) is the system impulse response,
i.e., Green function. In particular, G(r, s) is determined
by the specific wireless environment. For example, in ideal
unbounded and homogeneous mediums, G(r, s) is [34]

G(r, s) =
jκ0Z0

4π

ejκ0∥r−s∥

∥r− s∥

(
I3 −

(r− s)(r− s)T

∥r− s∥2

)
(5)

2In contrast to [15] and [16] where the uplink capacity of multi-user
CAP-MIMO was analyzed, this paper focuses on the pattern design for a
downlink multi-user CAP-MIMO system with tri-polarization transceivers.
Due to the power constraint of CAP-MIMO, inter-user interference, and tri-
polarization transmissions, the pattern design problem is challenging to solve,
which motivates us to propose a general scheme based on optimizations.
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Fig. 2. The concept of CAP-MIMO based wireless communications. (a) illustrates a CAP-MIMO transmitter, which has a quasi-continuous antenna aperture
ST for radiating information-carrying EM waves e(r). (b) illustrates K tri-polarization single-antenna receivers (i.e., K users) each being able to sense the
three polarizations of incident wave ek and then combine the three components via ψk to decode symbol xk .

in the far field, while G(r, s) is usually modeled as a stochastic
process in scattering environments [14].

C. Electromagnetic-Wave Receivers

As shown in Fig. 2 (b), we assume that all K EM-wave
receivers (i.e., K users) are located in the far-field region, and
each user is equipped with an ideal tri-polarization antenna
with area AR = λ2

4π , which satisfies AR ≪ AT [15]. In this
case, similar to a discrete antenna, each user can be reasonably
approximated by a point in 3-D space.

Let rk ∈ R3 denote the 3-D location of the k-th user.
In the ideal case, user k with a tri-polarization antenna
can sense the three polarizations of the EM waves reaching
point rk (i.e., holographic capability [11]). Then, the three
polarization components are combined to decode symbol xk

with a polarization combiner ψk ∈ C3.3 Thus, according to
(2) and (4), the EM wave received by user k can be expressed
as

yk = ek + nk = xk

∫
ST

Gk(s)θk (s) ds︸ ︷︷ ︸
Desired signal to user k

+
K∑

j=1,j ̸=k

xj

∫
ST

Gk(s)θj (s)ds︸ ︷︷ ︸
Interferences from other users

+ nk︸︷︷︸
Noise

, (6)

where ek := e(rk), Gk(s) := G(rk, s), and nk ∈ C3 is
the EM noise at user k, which is produced by all incoming

3There are two potential ways to achieve an adjustable combinerψk: 1) The
receiver antenna can actively adjust its polarization direction to combine the
polarization components in the analog domain, i.e., polarization-adjustable
reconfigurable antennas [36]. 2) The receiver can digitalize the polarization
components and then combine them in the digital domain.

EM waves that are not generated by the transmitter [34]. For
simplicity, we follow the isotropic propagation assumption
used in [12], thus nk for all k ∈ {1, · · · , K} can be mod-
eled as mutually independent additive white Gaussian noises
(AWGNs) with zero mean and variance σ2I3. Our work can be
easily extended to the general colored-noise case by replacing
σ2I3 in the following analysis with the specified E

{
nknH

k

}
.

D. Sum-Rate Maximization Problem Formulation

Based on the above system model, in this subsection,
we formulate the sum-rate maximization problem for multi-
user CAP-MIMO. By calculating the sum of multi-user mutual
information, the sum-rate of K users, can be derived from (6)
as

Rsum =
K∑

k=1

log2 det
∣∣I3 +αkα

H
k J−1

k

∣∣, (7)

where αk and Jk are respectively given by

αk =
∫
ST

Gk(s)θk (s) ds,

Jk =
K∑

j=1,j ̸=k

∫
ST

Gk(s)θj (s) ds
(∫

ST

Gk(s′)θj (s′) ds′
)H

+ σ2I3.

(8)

In practical systems, we are interested in investigating the
maximum sum-rate subject to a given power constraint. By
integrating the radial component of the Poynting vector over
a sphere with infinite-length radius [34], we introduce the
following lemma to upper-bound the total transmit power of
CAP-MIMO in the sense of expectation.

Lemma 1 (Transmit power constraint of multi-user
CAP-MIMO): The total transmit power of the multi-
user CAP-MIMO based communication systems can be
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upper-bounded by the following inequality:
K∑

k=1

∫
ST

∥θk (s)∥2ds ≤ PT, (9)

where PT can be viewed as the allowable maximum “transmit
power” of CAP-MIMO, which is implicitly associated with
the physical radiation power and measured in A2 (or mA2).

Proof: Please see Appendix A.
By combing (7) and (9), the original problem of sum-rate

maximization subject to the transmit power constraint can be
formulated as

Po : max
θ(s)

Rsum =
K∑

k=1

log2 det
∣∣I3 +αkα

H
k J−1

k

∣∣, (10a)

s.t.
K∑

k=1

∫
ST

∥θk (s)∥2ds ≤ PT, (10b)

where θ(s) is defined as θ(s) := {θk (s)}K
k=1. Our goal is to

maximize the sum-rate in (10a) by appropriately designing the
continuous pattern functions θ(s), i.e., the current distribution
on the continuous aperture ST of CAP-MIMO.4

Remark 1: Generally, the pattern design problems such as
Po in (10) are difficult to solve. The reason is that, the
continuous pattern functions θ(s) within integrals exist in both
optimization objective and constraint in problem Po in (10),
which is actually non-convex functional programming [33].
In this case, since the partial derivatives of the optimization
objective with respect to θ(s) are difficult to obtain, the
classical signal processing techniques for discrete arrays, such
as gradient descent and Lagrange dual method [37], are hard to
be adopted. Such kind of non-convex functional programming
is common in the optics and micro-wave areas, especially for
the design of the radiation patterns of directional antennas, and
these problems are usually addressed by using commercial EM
simulation software such as high frequency structure simulator
(HFSS), which results in high time and space complexity.

III. DEVELOPED PATTERN-DIVISION MULTIPLEXING
(PDM) FOR CAP-MIMO

To address the challenging optimization of continuous
pattern functions as shown in problem Po in (10), in this
section, we develop PDM technique to design CAP-MIMO
patterns. The key idea is to use series expansion to expand
the continuous pattern functions in an orthogonal basis space.
In this way, the continuous pattern functions are projected
onto finite orthogonal bases, thus the design of these functions
is transformed to the design of their projection lengths in
the orthogonal basis space, which makes optimizing con-
tinuous functions feasible. Specifically, in Subsection III-A,
we introduce the developed PDM technique to deal with
CAP-MIMO patterns. Then, in Subsection III-B, we provide
the performance analysis of the developed PDM.

4Due to the difficulties of hardware implementations [20], [21], [22], [23],
generating any patterns on a continuous aperture is challenging for current
technologies. However, the optimized θ(s) can be viewed as ideal pattern
designs for CAP-MIMO. In practice, these ideally designed patterns can
be appropriately adjusted, such as low-resolution quantization or discrete
sampling, to satisfy the hardware constraints of practical CAP-MIMO systems.

A. A General Pattern-Division Multiplexing (PDM)
Technique

Different from the existing methods which adopt the pat-
terns directly generated by special functions for coherent
transmissions [11], [12], in this section, we develop PDM
technique to flexibly design the patterns for CAP-MIMO
according to the knowledge of continuous channel func-
tions {Gk(s)}K

k=1. Particularly, the developed PDM aims to
strengthen the desired information-carrying signals and make
the EM waves carrying different symbols as much orthogonal
as possible at the users. In this way, higher channel capacity is
expected, which is similar to the space-division multiplexing
in classical MIMO systems.

To efficiently optimize the continuous pattern functions
{θk(s)}K

k=1 in problem Po in (10), inspired by the pattern
design methods in antenna theory, an intuitive idea is to use
series expansion to project these continuous functions onto
an orthogonal space [34]. In this paper, we use Fourier bases
to expand the spatial continuous pattern functions. Since the
Fourier transform of spatial domain is exactly the wavenumber
domain, this choice of bases allows us to better understand and
analyze the pattern design from the perspective of wavenumber
space. In this way, we obtain the following lemma.

Lemma 2 (Fourier series expansion of pattern functions):
For an arbitrary continuous pattern function θk(s) ∈ C3

defined in volume s := (sx, sy, sz) ∈ ST, if θk(s) is
absolutely integrable, pattern function θk(s) to be designed
can be equivalently rewritten as

θk(s) =
∞∑
n

wk,nΨn (s), s ∈ ST, (11)

where we define n := (nx, ny, nz) ∈ Z3 and
∑∞

n :=∑∞
nx=−∞

∑∞
ny=−∞

∑∞
nz=−∞ to simplify notations. Partic-

ularly, the projection length wk,n ∈ C3 in the wavenumber
domain and the Fourier base function Ψn (s) ∈ C can be
written as

wk,n =
1√
AT

∫
s∈ST

θk(s)Ψ∗n (s) ds, n ∈ Z3, (12a)

Ψn (s) =
1√
AT

e
2πj

(
nx
Lx

(sx−Lx
2 )+ ny

Ly

(
sy−

Ly
2

)
+ nz

Lz
(sz−Lz

2 )
)
,

s ∈ ST, (12b)

where Lx, Ly , and Lz denote the maximum projection lengths
of volume ST on the x-, y-, and z-axis of 3-D coordinate
system, respectively. The Fourier bases Ψn (s) satisfy∫

s∈ST

Ψn (s) Ψ∗n′ (s)ds =
{

1, n′ = n,
0, n′ ̸= n,

(13)

which guarantees the orthogonality between any two basis
functions.

Note that, different from the Fourier basis functions in
[14] which represent the spatial plane-wave channels, the
basis functions in (12) have no physical significance, which
only provide functional degrees of freedom for the further
optimization of pattern functions θ(s). Since their indexes
n := (nx, ny, nz) ∈ Z3 only take integer values, the equality
(2πnx/Lx)2+(2πny/Ly)2+(2πnz/Lz)

2 = κ2
0 does not hold
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Fig. 3. The normalized channel gain ∥F {G1(s)rect (s ∈ ST)}∥2F against the normalized wavenumber κx/κ0, where frequency is fixed as f = 2.4 GHz
in (a) and distance is fixed as d = 0.1 m in (b).

in most cases. Then, using the series expansion in Lemma 2,
the continuous pattern functions {θk(s)}K

k=1 in problem Po in
(10) can be equivalently replaced by their discrete projection
lengths {wk,n}K

k=1 in the wavenumber space.
To this end, we introduce the following two useful corol-

laries to address the continuous pattern functions:
Corollary 1 (Continuous-discrete transform for electric

field): Let κ := (κx, κy, κz) denote the wavenumber and
F {·} (κ) denote the Fourier transform of its argument on
surface ST at wavenumber κ. By adopting Fourier series
expansion for pattern function θj(s), the product of channel
function Gk(s) and pattern function θj(s) in integral

∫
ST

ds,
i.e., the electric field, can be equivalently rewritten as∫

ST

Gk(s)θj (s) ds =
∞∑
n

Ωk,nwj,n,

∀k, j ∈ {1, · · · , K}, (14)

where

Ωk,n = F {Gk(s)} (κn) =
∫
ST

Gk(s)Ψn (s) ds, (15)

in which Ωk,n ∈ C3×3 is exactly the Fourier transform of
function Gk(s)rect (s ∈ ST) over the CAP-MIMO aperture
ST at wavenumber κn = (2π nx

Lx
, 2π

ny

Ly
, 2π nz

Lz
). In particu-

lar, according to Parseval’s theorem, the following equation
naturally holds:∫

ST

∥Gk(s)∥2F ds =
∞∑
n

∥Ωk,n∥2F, (16)

where the left-hand side is the integral of the Frobenius
norms of continuous functions while the right-hand side is the
sum of the Frobenius norms of discrete matrices. Particularly,
∥Gk(s)∥2F can be viewed as the channel gain in the spatial
domain at position rk and ∥Ωk,n∥2F can be viewed as the
channel gain in the wavenumber domain at wavenumber κn.

Corollary 2 (Continuous-discrete transform for power con-
straint): According to Parseval’s theorem, the Euclidean norm

of pattern function θk (s) in integral
∫
ST

ds, i.e., the transmit
power of xk, can be equivalently rewritten as

∫
ST

∥θk (s)∥2ds =
∞∑
n

∥wk,n∥2, ∀k ∈ {1, · · · , K}, (17)

which guarantees the conservation of system energy.
Utilizing the continuous-discrete transforms in Corollary 1

and Corollary 2, we note that the continuous functions
{Gk(s)}K

k=1 and {θk(s)}K
k=1 can be replaced by their projec-

tion lengths {Ωk,n}K
k=1 and {wk,n}K

k=1, respectively. Thus,
the functional programming [33] can be reformulated as a
common digital signal processing problem. However, since
the number of expansion items is infinite as shown in
(14), (16) and (17), the optimization of projection lengths
{wk,n}K

k=1 is still unacceptable for practical computing
devices. Therefore, how to address the infinite expansion items
becomes a critical issue for the pattern design of CAP-MIMO

Fortunately, thanks to the inherent physical properties
of function Gk(s)rect (s ∈ ST), some recent works have
revealed that, the value of ∥Ωk,n∥2F, i.e., the channel gain in
the wavenumber domain, is high in the low-wavenumber band
and negligible in the high-wavenumber band in most cases.
For example, the authors in [12] have shown by simulations
that, in a typical system with two linear-aperture CAP-MIMO
transceivers, the wavenumber-domain channel gain within the
band of [−κ0, κ0] is usually much higher than that within
the other bands [12, Fig. 4]. By deriving the closed-form
expression of F {Gk(s)rect (s ∈ ST)}, the authors in [38]
have analytically proved that, the wavenumber-domain channel
gain within the band of [−κ0, κ0] dominates in the whole
wavenumber domain [38, Fig. 2, Fig. 3]. Some works on
channel modeling have also pointed out that, the small-scale
fading of CAP-MIMO channel can be modeled by the sum of
finite Fourier plane-wave representations, which also implies
that ignoring high-wavenumber expansion items has little
impact on channel quality [10, Eq. (39)].
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To observe the above fact, here we take a specific sce-
nario for example. For simplicity, we consider a single-user
CAP-MIMO system working at frequency f , where the
CAP-MIMO transmitter is deployed on the x-axis with aper-
ture ST =

{
(sx, sy, sz)

∣∣∣ |sx| ≤ 0.5 m, sy = 0, sz = 0
}

and
the user is located at (0, 0, d). Then, we plot the normalized
channel gain ∥F {G1(s)rect (s ∈ ST)}∥2F against the normal-
ized wavenumber κx/κ0 in Fig. 3 (a) and Fig. 3 (b) with
different setups. From these two figures, one can observe that,
for all our considered setups, the channel gain within the band
of κx ∈ [−κ0, κ0] dominates in the wavenumber domain.
Particularly, when |κx/κ0| is larger than 1, compared with
|κx/κ0| = 0, the wavenumber-domain channel gain suffers a
large loss of about -30 dB, which is in agreement with the
results in existing works [10], [12], [38].

As a result, this fact inspires us to approximate the Fourier
expansion series

∑∞
n Ωk,nwj,n with finite low-wavenumber

and high-power items that satisfy |2π nx

Lx
| ≤ κ0, |2π

ny

Ly
| ≤ κ0,

and |2π nz

Lz
| ≤ κ0 and ignore those high-wavenumber and low-

power items, which actually exploits the idea of compressed
sensing [39]. In this way, we obtain the following proposition.

Proposition 1 (Finite-item approximation of expansion
series): Define N := (Nx, Ny, Nz) with Nx, Ny , and
Nz being the numbers of the reserved expansion items
on the x-, y-, and z-axis, respectively. Let

∑N
n :=∑Nx

nx=−Nx

∑Ny

ny=−Ny

∑Nz

nz=−Nz
for notation simplification.

Then, the electric field in (14) and the transmit power in (17)
can be approximated5 by∫
ST

Gk(s)θj (s) ds ≈
N∑
n

Ωk,nwj,n, ∀k, j ∈ {1, · · · , K},

(18a)∫
ST

∥θk (s)∥2ds ≈
N∑
n

∥wk,n∥2, ∀k ∈ {1, · · · , K}, (18b)

where the numbers of reserved expansion items N are sug-
gested to be set to

Nx =
⌈

κ0Lx

2π

⌉
, Ny =

⌈
κ0Ly

2π

⌉
, Nz =

⌈
κ0Lz

2π

⌉
. (19)

Proof: Employ a truncation operation on (14) and (17),
and then find the minimum positive integers Nx, Ny , and Nz

subject to 2π Nx

Lx
≥ κ0, 2π

Ny

Ly
≥ κ0, and 2π Nz

Lz
≥ κ0.

Exploiting the above proposition, the total number of expan-
sion items becomes finite, which is acceptable for the practical
computing devices. For example, when Lx = 0.5 m and
f = 2.4 GHz, the number of reserved items on the x-axis
can be chosen as Nx =

⌈
κ0Lx

2π

⌉
= 4. In this way, it becomes

feasible to design the continuous pattern functions {θk(s)}K
k=1

for CAP-MIMO via optimizing the finite projection lengths
{wk,n}K

k=1 in the wavenumber space.

5This approximation is valid when the evanescent waves are negligible,
i.e., the users are not too close to the CAP-MIMO aperture. In this case, all
wavenumber components of propagating waves take the real values within
[−κ0, +κ0], thus the suggested N in (19) ensures a safe approximation.

B. Performance Analysis of Developed PDM Technique

Since the developed PDM includes a finite-item approxima-
tion as shown in Proposition 1, the CAP-MIMO system will
suffer a performance loss. Nevertheless, it can be expected
from Corollary 1 and Corollary 2 that, when the number
of the reserved expansion items increases, this performance
loss will approach zero asymptotically. In this subsection,
to show the PDM’s capability of approaching the ideal solution
asymptotically, we analyze the performance loss caused by the
finite-item approximation. To this end, in order to make the
problem analytically tractable and get insightful results, here
we consider a simplified CAP-MIMO system with single user
(K = 1), while the general multi-user case will be studied in
Section IV.

1) Achievable User signal-to-noise ratio (SNR): To analyze
the performance loss caused by the finite-item approximation
while employing PDM, we first study the achievable user SNR
in the ideal case. Since K = 1, for notation simplification,
we temporarily omit the subscript k of channel function
Gk(s), pattern function θk (s), and polarization combiner
ψk, respectively. Then, the original sum-rate maximization
problem Po in (10) can be equivalently reformulated as the
following SNR maximization problem:

Ps : max
ψ,θ(s)

γ =

∣∣∣ψH
∫

ST
G(s)θ (s) ds

∣∣∣2
ψHψσ2

, (20a)

s.t.
∫
ST

∥θ (s)∥2ds ≤ PT, (20b)

where γ is the user SNR, and ψ ∈ C3 is used to decode
symbols at the user side, as shown in Fig. 2 (b).

Different from most CAP-MIMO systems whose perfor-
mance limits are difficult to obtain due to the non-convex
functional programming, we prove that the single-user
CAP-MIMO system has a closed-form and optimal pattern
design, given as below:

Lemma 3 (Achievable user SNR): The maximum achiev-
able SNR of the single-user CAP-MIMO system, i.e., the
optimal solution to problem Ps in (20), can be expressed as

γopt =
PT

σ2
λmax

{∫
ST

G(s)GH(s)ds
}

, (21)

where λmax {·} denotes the maximum eigenvalue of its argu-
ment. In particular, the optimal user SNR γopt can be achieved
when

θ (s)=

√
PTGH(s)ξmax

{∫
ST

G(s′)GH(s′)ds′
}

√∫
ST

∥∥∥GH(s)ξmax

{∫
ST

G(s′)GH(s′)ds′
}∥∥∥2

ds

,

(22a)

ψ=
ξmax

{∫
ST

G(s)GH(s)ds
}

∥∥∥ξmax

{∫
ST

G(s)GH(s)ds
}∥∥∥ , (22b)

where ξmax {·} denotes the eigenvector corresponding to the
maximum eigenvalue of its argument.

Proof: Please see Appendix B.
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Remark 2: When the user is located in the far-field region,
the squared channel function GH(s)G(s) takes the similar
amplitude for all s ∈ ST, thus we have

∥∥GH(s)G(s)
∥∥ ≈∥∥GH(s0)G(s0)

∥∥ wherein s0 is the central coordinate of ST. In
this case, it can be observed from (21) that, the achievable user
SNR can be approximated by γopt ≈ PT

σ2 AT

∥∥GH(s0)G(s0)
∥∥,

where
∥∥GH(s0)G(s0)

∥∥ can be viewed as the gain of channel
between the CAP-MIMO transmitter and the user. One can
find that, the achievable user SNR γopt is approximately pro-
portional to the transmit SNR PT

σ2 and the area of CAP-MIMO
aperture AT.

2) Performance Loss Caused by Finite-Item Approximation:
By combining Corollary 1 and Lemma 3, the achievable user
SNR in the ideal case, i.e., γopt in (21), can be equivalently
rewritten as

γopt =
1
σ2

∥∥∥∥∥
∞∑
n

Ωnwn

∥∥∥∥∥
2

, (23)

where Ωn and wn are the Fourier transform of G (s) on
surface ST and the inverse Fourier transform of θ (s) at
wavenumber κn, respectively, written as

Ωn =
∫
ST

G (s) Ψn (s) ds, (24)

wn =
1√
AT

∫
ST

θ (s) Ψ∗n (s) ds. (25)

After employing the finite-item approximation in Proposition 1
for γopt in (23), the non-ideal achievable SNR γ̂ can be written
as:

γ̂ =
1
σ2

∥∥∥∥∥
N∑
n

Ωnwn

∥∥∥∥∥
2

. (26)

To analytically evaluate the truncation error of the finite-item
approximation in Proposition 1 on the system performance,
here we define a new metric called SNR loss: ∆ := γopt − γ̂,
which is related to the CAP-MIMO transmit power and the
noise power at the user. Then, our goal is to derive the upper
bound of the SNR loss ∆ for a given N, which characterizes
the worst-case performance loss caused by the finite-item
approximation in Proposition 1. By exploiting some inequality
techniques, we obtain the following lemma:

Lemma 4 (Upper bound of SNR loss): Given the numbers
of the reserved Fourier expansion items N = (Nx, Ny, Nz),
the SNR loss ∆ can be upper-bounded by

∆ ≤ PT

σ2

√
1− η (1 +

√
η)
∫
ST

∥G(s)∥2F ds, (27)

where η ∈ [0, 1] is defined as

η =
∑N

n ∥Ωn∥2F∑∞
n ∥Ωn∥2F

, (28)

which can be regarded as a threshold describing the degree of
finite-item approximation.

Proof: Please see Appendix C.
Remark 3: From (27) we can observe that, the upper bound

of the SNR loss ∆ is approximately proportional to the
transmit SNR PT

σ2 and the aperture area AT of CAP-MIMO.

Algorithm 1 Proposed Pattern Design Scheme for the Sum-
Rate Maximization of Multi-User CAP-MIMO Systems
Input: Channel functions Gk (s) with respect to s ∈ ST

for all users k ∈ {1, · · · , K}.
Output: Optimized sum-rate Rsum; optimized combiners
ψ at users; optimized patterns θ (s) on the aperture of
CAP-MIMO transmitter.

1: Initialize ψ and θ (s);
2: while No convergence of Rsum do
3: Update ρ by (31);
4: Update ψ by (34);
5: Update w by (40) and (41);
6: Update θ (s) by (42);
7: Update Rsum by (10a);
8: end while
9: return Optimized Ropt

sum, ψopt, and θopt (s).

It implies that, for a given N, larger aperture area AT will
lead to larger performance loss. This explains why N should
be set according to the aperture size, as shown in (19).
Besides, when the number of the reserved expansion series
N increases, i.e., η → 1, the upper bound of the SNR loss ∆
gradually goes to zero. It indicates that, despite the existence
of the finite-item approximation, the performance loss can
be artificially controlled by setting an acceptable N while
employing the developed PDM. In this way, the pattern design
scheme based on PDM is promising to approach the ideal
solution asymptotically.

IV. PROPOSED PATTERN DESIGN SCHEME
BASED ON PDM TECHNIQUE

In this section, to show how to design CAP-MIMO patterns
through the developed PDM technique, we propose a BCD
based pattern design scheme to solve the sum-rate maximiza-
tion problem Po in (10) as a typical example. Specifically,
in Subsection IV-A, we present the whole process of the
scheme design. Then, in Subsection IV-B, the convergence
and computational complexity of the proposed pattern design
scheme are discussed.

A. Proposed Pattern Design Scheme for Sum-Rate
Maximization

In this subsection, we propose a BCD based pattern design
scheme to solve the sum-rate maximization problem Po in
(10). Firstly, we consider to decouple the continuous pattern
functions by adopting an equivalent transform for sum-rate
maximization problem [40, Theorem 1], and we obtain the
following lemma.

Lemma 5 (Equivalent problem for sum-rate maximization):
By introducing auxiliary variables ρ = [ρk, · · · , ρK ]T ∈ RK

+

and the combining vectors ψ := {ψk}
K
k=1 for all K users,

the original sum-rate maximization problem Po in (10) can
be equivalently reformulated as

P1 : max
ρ,ψ,θ(s)

R′sum =
K∑

k=1

log2ρk−
1

ln 2

K∑
k=1

ρkEk+
K

ln 2
, (29a)
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s.t.
K∑

k=1

∫
ST

∥θk (s)∥2ds ≤ PT, (29b)

where ψk ∈ C3 is the polarization combiner at user k as
shown in Fig. 2 (b), and Ek is the mean-square error (MSE)
of the decoded symbol x̂k = ψH

k yk, defined as

Ek = Ex,n

{
|x̂k − xk|2

}
=
∣∣∣∣1− ∫

ST

ψH
k Gk(s)θk (s) ds

∣∣∣∣2
+

K∑
j=1,j ̸=k

∣∣∣∣∫
ST

ψH
k Gk(s)θj (s)ds

∣∣∣∣2+σ2∥ψk∥
2
. (30)

To solve the equivalent problem P1 in (29), similar to
conventional MIMO beamforming, a scheme of pattern design
can be established by optimizing variables ρ, combiners ψ,
and continuous pattern functions θ(s) alternatively until the
convergence of sum-rate Rsum. For clarity, we summarize the
whole process of this pattern design scheme in Algorithm 1,
where the updates of ρ, ψ, and θ(s) are introduced in the
following three parts, respectively.

1) Fix ψ and θ(s), Then Optimize ρ: While fixing the user
combiners ψ and the CAP-MIMO pattern functions θ(s), the
optimal solution to the auxiliary variables ρ can be obtained
by setting ∂R′

sum
∂ρk

to zero for all k ∈ {1, · · · , K}, written as

ρopt
k = E−1

k , k ∈ {1, · · · , K}. (31)

2) Fix ρ and θ(s), Then Optimize ψ: While fixing the auxil-
iary variables ρ and the pattern functions θ(s) of CAP-MIMO,
after removing the unrelated components in problem P1 in
(29), the subproblem of optimizing the user combiners ψ can
be reformulated as

P2 : max
ψ
−

K∑
k=1

ρkψ
H
k Akψk + 2

K∑
k=1

ρkℜ
{
ψH

k βk

}
, (32)

where Ak and βk are defined as

Ak =
K∑

j=1

∫
ST

Gk(s)θj (s)ds
(∫

ST

Gk(s′)θj (s′)ds′
)H

+σ2I3,

(33a)

βk =
∫
ST

Gk(s)θk (s) ds. (33b)

Note that, subproblem P2 in (32) is a standard convex
quadratic programming (QP), thus the optimal solution to ψ
can be easily calculated as

ψopt
k = A−1

k βk, k ∈ {1, · · · , K}. (34)

3) Fix ρ and ψ, Then Optimize θ(s): Given fixed auxiliary
variables ρ and the user combiners ψ, after removing the
unrelated components in problem P1 in (29), the subproblem
of optimizing the continuous pattern functions θ(s) can be
reformulated as

P3 : max
θ(s)

K∑
k=1

ρkgk (θ (s)), (35a)

s.t.
K∑

k=1

∫
ST

∥θk (s)∥2ds ≤ PT, (35b)

where the function gk (θ (s)) is defined as

gk (θ (s)) =
K∑

j=1

∣∣∣∣∫
ST

ψH
k Gk(s)θj (s)ds

∣∣∣∣2
− 2ℜ

{∫
ST

ψH
k Gk(s)θk (s) ds

}
. (36)

To address the challenging functional programming shown in
(35), we consider to employ the continuous-discrete transforms
in Corollary 1 and Corollary 2, as well as the finite-item
approximation in Proposition 1, to address the continuous
channel functions and pattern functions. In this way, problem
P3 in (35) can be reformulated as

P4 : max
w

K∑
k=1

ρkĝk (w), (37a)

s.t.
K∑

k=1

N∑
n

∥wk,n∥2 ≤ PT, (37b)

where we have defined w as the set of all projection lengths
wk,n and

ĝk (w)=
K∑

j=1

∣∣∣∣∣
N∑
n

hH
k,nwj,n

∣∣∣∣∣
2

− 2ℜ

{
N∑
n

hH
k,nwk,n

}
, (38)

in which hk,n := ΩH
k,nψk.

To simplify notations, we define hk and wk as the
vectorized sets of hk,n and wk,n for all n = (nx, ny, nz) ∈
{{−Nx, · · · , Nx}, {−Ny, · · · , Ny}, {−Nz, · · · , Nz}},
respectively. In this way, the optimization problem P4 in (37)
can be equivalently reorganized as

P5 : max
w

K∑
k=1

ρk

 K∑
j=1

∣∣hH
k wj

∣∣2− 2ℜ
{
hH

k wk

}, (39a)

s.t.
K∑

k=1

∥wk∥2 ≤ PT, (39b)

which is a standard quadratically constrained quadratic pro-
gramming (QCQP). By adopting Lagrange multiplier method
[41], the optimal solution to problem P5 in (39) can be
obtained by

wopt
k = ρk

ρk

K∑
j=1

hjhH
j +ζI3NF

−1

hk, ∀k ∈ {1, · · · , K},

(40)

wherein NF := (2Nx + 1)(2Ny + 1)(2Nz + 1) is the total
number of the reserved Fourier expansion items. Note that, ζ is
the Lagrange multiplier, which should be chosen such that the
complementarity slackness condition of the power constraint
(39b) is satisfied, i.e.,

ζopt = min

{
ζ ≥ 0 :

K∑
k=1

∥wk∥2 ≤ PT

}
. (41)
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One-dimensional binary search can be an efficient way to solve
(41) and obtain the optimal Lagrange multiplier ζopt [40].

Finally, after calculating the optimal projection lengths{
wopt

k

}K

k=1
, according to Lemma 2, the final solution to the

patterns on CAP-MIMO aperture can be obtained by

θopt
k (s) =

N∑
n

wopt
k,nΨn (s), s ∈ ST, (42)

which completes the proposed pattern design scheme.
Remark 4: In this paper, we focus on studying the theoret-

ical performance of a multi-user CAP-MIMO system. Due to
the difficulties in generating any current distribution and the
high-complexity iterative procedure, the online implementa-
tion of the proposed pattern design is challenging for current
technologies. Therefore, a potential application scenario in the
future may be low-mobility communications with slow-fading
channels, where the patterns do not need to update frequently.
Besides, a possible way to utilize the proposed pattern design
is to generate the offline codebook, so that the mobile users
can be served through a beam training process.

B. Convergence and Complexity Analysis

1) Convergence: The convergence of the proposed pattern
design scheme is asymptotic due to the finite-item approx-
imation as shown in Proposition 1. Specifically, here we
introduce superscript t as the iteration index for Algorithm 1,
e.g., θt(s) refers to the set of pattern functions at the end of
the t-th iteration. Thus, the convergence of Algorithm 1 can
be summarized as follows:

R′sum(ρt+1,ψt+1,θt+1 (s))
(a)

≥ R′sum(ρt+1,ψt+1,θt (s))
(b)

≥ R′sum(ρt+1,ψt,θt (s))
(c)

≥ R′sum(ρt,ψt,θt (s)), (43)

where (b) and (c) follow since the updates of auxiliary variable
ρ in (31) and combiner ψ in (34) are monotonous, while (a)
follows when the number of reserved expansion items NF

is sufficiently large. It is because a performance gap exists
between problem P3 in (35) and problem P4 in (37), which
is caused by the finite-item approximation in (18). When NF

increases, this performance gap can be close to zero gradually
according to Lemma 4, which ensures the strict convergence
of Algorithm 1.

2) Complexity: The computational complexity of the pro-
posed pattern design scheme is mainly introduced by the
updates of variables ρ, ψ, w, and pattern functions θ(s),
as shown in (31), (34), (40), and (42), respectively. Let Is

denote the sampling number of the continuous integral opera-
tion

∫
ST

ds. Then, the computational complexity of updating
auxiliary variable ρ is O

(
12K2Is + K2 + 4K

)
, which is

mainly caused by the calculation of MSE Ek. The complexity
of updating combining vector ψ is O

(
10K2Is + K2 + 21K

)
,

which is due to the matrix inversion in (34). Different from
the updates of ρ and ψ with closed-form expressions, the
update of w requires solving QCQP in (39). Thus, for a
given accuracy tolerance ε, the complexity of updating w is

Fig. 4. An illustration of the simulation scenario, where one CAP-MIMO
transmitter simultaneously serves eight users.

O
(
log2 (1/ε)

√
NF + 1(1 + 2NF )N3

F

)
, which is caused by

the matrix inversion in (40) and the one-dimensional binary
search for optimal ζopt. Finally, the complexity of updating
θ(s) is O (IsNF ), which is caused by the discrete-continuous
transform as shown in (42). In general, since the aperture of
CAP-MIMO is nearly continuous, it is reasonable to assume
Is ≫ K and NF ≫ K. Thus, the overall computational
complexity of the proposed pattern design scheme can be
approximated by O

(
IoIsK

2 + log2 (1/ε) IoN
4.5
F

)
, wherein

Io is the iteration number required by the convergence of
sum-rate Rsum. Thanks to the finite-item approximation in
Proposition 1, the computational complexity of the proposed
pattern design scheme is similar to that of the well-known
weighted mean-square error minimization (WMMSE) [40].

V. SIMULATION RESULTS

A. Simulation Setup

1) Simulation Scenario: For the simulation scenario,
we consider a 3-D scenario with the topology shown in Fig. 4,
where one CAP-MIMO transmitter serves K = 8 users
simultaneously. Following the same setup in [15], we assume
that the CAP-MIMO transmitter is deployed on the xy-plane
with its center located at (0, 0, 0), i.e.,

ST :=
{

(sx, sy, sz)
∣∣∣ |sx| ≤

Lx

2
, |sy| ≤

Ly

2
, sz = 0

}
, (44)

where the CAP-MIMO aperture has a square shape with the
area of AT = 0.25 m2, i.e., Lx = Ly = 0.5 m. Particularly, all
users are located in a square region, where four of them are
located at (±1 m,±1 m, 30 m), and the other four are located
at (±5 m,±5 m, 30 m), respectively.

2) Simulation Parameters: Unless otherwise specified, the
simulation parameters are set as follows [34]. The frequency
of information-carrying current density j(s) and electric field
e(r) is set to f = 2.4 GHz, and the intrinsic impedance
is set to Z0 = 376.73 Ω. The maximum transmit power of
CAP-MIMO is set to PT = 100 mA2 for all schemes to
be compared, and the noise power is set to σ2 = 5.6 ×
10−3 V2/m2. To observe more space-related insights, channel
functions {Gk (s)}K

k=1 are generated by the free-space channel
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model6 (5). The sampling number of integral
∫
ST

ds is set to
Is = 1024. To show the impact of finite-item approximation
in Proposition 1, here we consider three different setups for
the finite-item approximation of expansion series: (i) Nx =
Ny = 7 and Nz = 0 (i.e., NF = 225); (ii) Nx = Ny = 4 and
Nz = 0 (i.e., NF = 81); (iii) Nx = Ny = 1 and Nz = 0
(i.e., NF = 9). Note that, for the considered aperture ST in
(44), setup (ii) is exactly the setting of N provided in (19),
i.e.,

⌈
κ0Lx

2π

⌉
=
⌈

κ0Ly

2π

⌉
= 4. All pattern functions {θk(s)}K

k=1

and user combiners {ψk}
K
k=1 are randomly initialized by the

standard complex-Gaussian stochastic processes and variables,
respectively.

3) Simulation Benchmarks: Inspired by the multi-user pat-
tern designs employed in [12] and [16], we consider the
following three benchmark schemes for comparison.

i) Match-filtering (MF) scheme [16]: Different from our
proposed scheme that designs patterns via alternating opti-
mization, the authors in [16] directly employed the conjugate
of channel functions as the patterns of an uplink multi-user
CAP-MIMO system. Although this MF scheme can maximize
the desired signal for each user, the inter-user interference
cannot be well suppressed. Here we extend this MF scheme
to the studied downlink case as a baseline. Without loss of
generality, we assume the antennas at users are in the y-axis
polarization and fix all combiners as ψk = [0, 1, 0]T. Then,
the pattern functions are set to θk(s) =

√
pGH

k (s)ψk, wherein
p is associated with the power allocated to K users. To satisfy
the power constraint

∑K
k=1

∫
ST
∥θk (s)∥2ds = PT, a scaling

operation can be employed to determine the value of p. Finally,
the optimized patterns θopt

k (s) can be substituted into (7) to
evaluate the sum-rate.

ii) Fully-digital MIMO [12]: The authors in [12] made a
comparison between a CAP-MIMO system and a fully-digital
MIMO system by dividing the continuous aperture into several
patches spacing of half wavelength. Then, the pattern of each
patch is assumed to be rectangular function, of which the
amplitude and phase can be optimized like discrete antennas
[12]. In this paper, we extend this baseline to our studied
tri-polarization multi-user case. Specifically, the considered
aperture sized of Lx × Ly allows the fully-digital MIMO
to deploy M = Mx × My = ⌈2Lx/λ⌉ × ⌈2Ly/λ⌉ patch
antennas. Assume that each patch antenna has an effective
aperture area of |Sm| = Am = λ2/4/π. The m-th patch
antenna is centered at (sm,x, sm,y, 0) with region Sm ={
(sx, sy, sz)

∣∣|sx − sm,x|2 + |sy − sm,y|2 ≤ Am/π, sz = 0
}

,
in which sm,x = mod (m− 1, Mx) λ/2 − Lx/2,
sm,y = ⌊(m− 1)/Mx⌋λ/2 − Ly/2. Next, the pattern
function of the m-th patch at region Sm is assumed to be
θk,m(s) = 1√

Am
rect (s ∈ Sm)vk,m ∈ C3, where {vk,m}M

m=1

is exactly the digital precoder for user k. Therefore, the
overall pattern function can be written as

θk (s) =
M∑

m=1

rect (s ∈ Sm)vk,m, k ∈ {1, · · · , K}. (45)

6Since the formulations in this paper do not impose requirements on
the mathematical structure of channel functions {Gk(s)}K

k=1, the proposed
pattern design scheme is also applicable to the other channel models.

Fig. 5. Sum-rate against the aperture area AT.

By substituting (45) into the expression of electric fields,
we obtain:∫

ST

Gk(s)θj (s) ds =
1√
Am

M∑
m=1

∫
Sm

Gk(s)dsvj,m

=
M∑

m=1

Hk,mvj,m = Hkvj , (46)

where Hk,m = 1√
Am

∫
Sm

Gk(s)ds ∈ C3×3 is the
channel between the m-th antenna and user k; Hk =
[Hk,1, · · · ,Hk,M ]; and vj =

[
vH

j,m, · · · ,vH
j,M

]H
. By substi-

tuting (45) and (46) into the original problem Po in (10), the
sum-rate maximization problem can be reformulated as

Pf : max
{vk}K

k=1

Rsum =
K∑

k=1

log2

(
1 +αH

k J−1
k αk

)
s.t.

K∑
k=1

∥vk∥2 ≤ PT, (47)

where αk =Hkvk and Jk =
∑K

j=1,j ̸=kHkvj(Hkvj)
H+σ2I3.

Note that problem Pf is exactly a standard sum-rate maxi-
mization problem in multi-user MIMO system, which can be
solved by the well-known fractional programming in [37].

iii) Upper bound: To evaluate the interference cancellation
capability of different schemes, similar to the ideal assumption
in multi-user MIMO systems, we consider the interference-
free sum-rate as the upper bound for comparison, which is
realized by ideally assuming all inter-user interferences are
fully canceled and then employing the proposed pattern design
scheme under setup (i) of N, i.e., NF = 225.

B. Sum-Rate Against the Aperture Area AT

To show the impact of CAP-MIMO aperture area on the
system performance, we first plot the sum-rate against the
aperture area AT in Fig. 5, where the aperture shape of
CAP-MIMO always remains a square, i.e., Lx = Ly . From
this figure, we have the following three observations.
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Firstly, the proposed PDM achieves a higher sum-rate than
the MF scheme. For example, when AT = 1m2, the sum-rate
achieved by the proposed scheme is 17.90 bps/Hz, which is
about 24% higher than 13.69 bps/Hz achieved by MF scheme.
The reason is that, the MF scheme directly employs the conju-
gate of channel functions to generate K patterns for multiple
users, and the negative impact of inter-user interference is
ignored. In this way, the beams steering towards different users
may spatially overlap, which causes a high interference. In
contrast, the proposed PDM jointly designs the patterns for K
users, which takes account of the influence of interference in
its optimization procedure. During the algorithm implementa-
tion, the proposed scheme actually makes a trade-off between
the amplification of desired signals and the suppression of
inter-user interference. In this way, the EM waves carrying
symbols can be accurately steered towards the users with
stronger spatial orthogonality, and thus higher sum-rate can
be achieved.

Secondly, the proposed PDM achieves different perfor-
mances while given different setups of N for finite-item
approximation. Particularly, the PDM scheme under setup
NF = 9 suffers an increasingly large performance loss
compared with those under setups NF = 81 and NF =
225. The reason is that, the reserved number expansion
items NF = 9 is so small that the finite-item approxi-
mation in (18) cannot provide enough functional DoFs to
well optimize the pattern functions {θk(s)}K

k=1. Besides,
compared with the PDM scheme under NF = 81, that
under NF = 225 achieves almost negligible performance
improvement. It implies that, for the considered aperture ST

in (44), when NF = 81, the number of functional DoFs
has been sufficiently large enough to well design the con-
tinuous pattern functions {θk(s)}K

k=1. The reason is that, the
wavenumber-domain channel gain of CAP-MIMO dominates
within the low-wavenumber band of [−κ0, κ0], as shown
in Fig. 3. Thus, ignoring the high-wavenumber items of
Fourier expansion series has very limited impact on pattern
designs, which demonstrates the effectiveness of the setup of
N provided in (19).

Finally, we obtain the similar results in [12] that the
CAP-MIMO schemes outperform the scheme of fully-digital
MIMO. The reason is from three aspects. First, the rectangular
function is directly employed as the pattern of each discrete
patch. Compared with a continuously controllable patch, each
patch of MIMO has limited degree of freedom to manipulate
the radiated EM waves. Second, the channel between the
m-th antenna and user k is Hk,m = 1√

Am

∫
Sm

Gk(s)ds. Since
continuous channel function Gk(s) varies at different positions
over s ∈ Sm, such an integral may result in a power loss
of Gk(s) (unless patch is small enough, e.g., λ/10 diameter
[12]). Physically speaking, it means that the eigenmode of the
patch antenna does not perfectly match the incident waves.
That is why smaller reconfigurable antennas are preferred by
metasurfaces [25]. Third, compared with the practical MIMO
with discrete antennas, the reconfigurable aperture of CAP-
MIMO fully covers the given region ST. It determines that
CAP-MIMO can obtain higher array gains to enhance the
desired signals for users.

Fig. 6. Sum-rate against the maximum transmit power PT.

C. Sum-Rate Against the Transmit Power PT

To show the impact of transmit power on the system per-
formance, we plot the sum-rate against the maximum transmit
power PT in Fig. 6. We have the following third observations.

Firstly, for all considered schemes, the achievable sum-rate
increases quickly as the transmit power becomes higher,
while the proposed PDM always outperforms the benchmark
schemes in the considered range of transmit power. For exam-
ple, when the transmit power PT is 103 mA2, the maximum
sum-rate achieved by fully-digital MIMO is 12.69 bps/Hz,
while that achieved by the proposed PDM scheme is about
15.96 bps/Hz, which achieves an improvement of about 26%.

Secondly, the performance gaps, including the gap between
the upper bound and the proposed scheme and the gap
between the proposed scheme and the MF scheme, become
larger as the maximum transmit power PT gets higher. The
reason behind this phenomenon is that, the performance gaps
among these three schemes highly depend on the inter-user
interference, and the sum-rate is simultaneously influenced by
the inter-user interference and the noise. When the transmit
power is low, the inter-user interference are relatively low,
thus the noise dominates, which makes the performance gaps
among these schemes small. In contrast, when the transmit
power of CAP-MIMO increases, the interference will be more
serious, which finally dominates in the undesired factors for
sum-rate improvement.

Finally, as PT increases, one can note that fully-digital
MIMO outperforms the CAP-MIMO with MF scheme when
PT is about 316.2 mA2. The reason is that the MF scheme
ignores the inter-user interference. When the transmit power
PT rises, the desired signals as well as the uncontrolled
interference increase simultaneously, which limits the rate of
sum-rate improvement. In contrast, the fraction programming
in [37] is adopted to design the precoder of fully-digital
MIMO. This scheme actually achieves a balance between
amplifying desired signals and suppressing inter-user inter-
ference, thus the increase of sum-rate improvement is faster.
This indicates that designing interference-suppressed patterns
is necessary to make multi-user CAP-MIMO effective.
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Fig. 7. The normalized amplitude of the x-component of the optimized
patterns θk(s) with respect to s ∈ ST for users k = 1, 2, 3, and 4.

Fig. 8. The phase of the x-component of the optimized patterns θk(s) with
respect to s ∈ ST for users k = 1, 2, 3, and 4.

D. Patterns θ(s) of CAP-MIMO

To show the pattern functions optimized by the proposed
pattern design scheme, by fixing NF = 81, we present the
normalized amplitude of the x-component of the optimized
patterns θk(s) for the former four users in Fig. 7, and their
phase in Fig. 8, respectively. We observe from Fig. 7 that, after
optimizing the patterns via the proposed scheme, the power
of the patterns for different users are mainly distributed in
non-overlapping regions, which seems like several orthogonal
functions. It indicates that, in order to maximize the sum-
rate, the pattern functions carrying different symbols are
designed to be as orthogonal as possible to reduce the inter-
user interference. Besides, from Fig. 8 one can notice that,
the phase values of the patterns carrying different symbols
are symmetrically distributed. It indicates that the information-
carrying EM waves are steered toward the angular directions
where the four users are located, respectively, as shown in
Fig. 4. This interesting phenomenon is similar to the result of
the conventional MIMO beamforming, which aims to generate
spatially-orthogonal beams toward multiple users. We can

Fig. 9. Sum-rate against the network radius R.

conclude that, both of these two figures have provided intuitive
explanations for the sum-rate improvement, which has also
demonstrated the effectiveness of the proposed pattern design
scheme.

E. The Impact of User Positions on Sum-Rate

In this subsection, we show the impact of users’ posi-
tions on the sum-rate of a multi-user CAP-MIMO system.
Specifically, we consider two different setups. Following the
variable-controlling principle, for the first setup, we assume
that the distances between all K users and the transmitter’s
center are equal. Thus, K users are evenly located on a
circle centered at (0, 0, L) with radius R, and the circle is
parallel to the xy-plane. Particularly, the k-th user’s position
is (Rcos(ϕk), Rsin(ϕk), L) wherein ϕk = 2kπ/K. Typically,
we consider four different vertical distances L = 2m, 5 m,
10 m, 30 m, and then simulate the sum-rate as a function of
network radius R. For the second setup, we assume that the
positions of K users are randomly distributed in the volume
V =

{
R ∈ [2 m, 30 m], L ∈ [2 m, 30 m], ϕk ∈ [0, 2π],∀k ∈

{1, · · · , K}
}

to account for the practical case. By fixing
NF = 81, we plot the sum-rate as a function of network radius
R in Fig. 9, and we obtain the following two observations.

Firstly, the sum-rates for all schemes decrease as the vertical
distance L increases. For example, when R = 10m, the pro-
posed PDM scheme can achieve the sum-rate of 29.32 bps/Hz,
26.51 bps/Hz, 22.90 bps/Hz, and 9.18 bps/Hz for L = 2m,
5 m, 10 m, and 30 m, respectively. There are two reasons
for this phenomenon. One reason is that, as the receivers
get far away from the transmitter, more transmitted power
is lost into space due to the larger-scale fading of channels,
leading to a decrease in the signal strengths at the receivers.
The other reason is that, limited by the spatial resolution
of the CAP-MIMO aperture, the transmitter is increasingly
difficult to accurately steer the desired signals toward the target
positions.

Secondly, as the network radius R increases, the sum-rate
for each scheme experiences two stages: Increase to a peak at
first and then gradually decrease at R = 2m. This interesting
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phenomenon can be explained as follows. During the first stage
when R is small, the users in the network are close, which
results in serious inter-user interference. As R increases, the
interference gradually weakens, leading to an increasing sum-
rate. Then, during the second stage, when R is sufficiently
large, the negative effect of large-scale channel fading becomes
more significant, resulting in a decrease of the sum-rate.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have developed PDM technique to design
the CAP-MIMO patterns. Specifically, we have studied and
modeled a multi-user CAP-MIMO system, which may provide
a framework for some open problems, such as the analyses of
channel DoFs and capacity [38]. The developed PDM is able
to transform the design of the continuous pattern functions
to the design of their projection lengths on finite orthogonal
bases. Thus, PDM may serve as a signal processing framework
for some technical problems in CAP-MIMO systems, such
as channel estimation [17] and energy efficiency optimization
[42]. Utilizing PDM, we have proposed a BCD based pattern
design scheme to solve the formulated sum-rate maximization
problem. Simulation results have shown that, the sum-rate
achieved by the proposed scheme is higher than that achieved
by benchmark schemes. In the future, the CAP-MIMO pattern
design with lower complexity is important, and some modern
tools like deep reinforcement learning [43] can be leveraged
for the efficient pattern design of CAP-MIMO.

APPENDIX A
PROOF OF LEMMA 1

By integrating the radial component of the Poynting vector
over a sphere with infinite-length radius, for a deterministic
source in a given surface ST, the physical radiation power
can be upper-bounded by the integral of the Euclidean norm
of j(s) over s ∈ ST [34]. Here we extend this proof to the
case in the sense of expectation, where the current distribution
j(s) is a stochastic process composed of multiple patterns that
carry symbols x, as shown in (2).

Firstly, we calculate the Poynting vector S(r) by its
definition:

S(r)

=
1

2Z0
eH(r)e(r)

=
1

2Z0

K∑
k=1

|xk|2
∥∥∥∥∫
ST

G(r, s)θk (s) ds
∥∥∥∥2

+
1

2Z0

∑
j ̸=j′

x∗jxj′

(∫
ST

G(r, s)θj (s) ds
)H∫

ST

G(r, s)θj′(s) ds,

(48)

where
∑

j ̸=j′ ≜
∑K

j′=1

∑K
j=1,j ̸=j′ . Utilizing Ex{xxH} =

IK , the physical radiation power of CAP-MIMO Prad in the
sense of expectation can be calculated as

Prad = lim
r→∞

Ex

{∫
Ω

S(r)r2dω

}

= lim
r→∞

1
2Z0

K∑
k=1

∫
Ω

∥∥∥∥∫
ST

G(r, s)θk (s) ds
∥∥∥∥2

r2dω, (49)

wherein r = ∥r∥ and ω ∈ Ω is the solid angle of 4π steradians.
Note that, when r is large enough, the channel function G(r, s)
can be approximated by

G(r, s) =
jκ0Z0

4π

ejκ0r

r

(
I3 −

rrH

r2

)
e−jκT(ϕ,φ)s, (50)

where ϕ ∈ [0, π) and φ ∈ [−π, π) are the elevation angle and
azimuth angle respectively, which is associated with points
r and s. Plane-wave wave vector κ (ϕ, φ) takes the form of
κ (ϕ, φ) = 2π

λ [cos φ sin ϕ, sin φ sin ϕ, cos ϕ]T. By substituting
(50) into (49), we obtain

Prad

= lim
r→∞

κ2
0Z0

32π2

K∑
k=1

∫
Ω

∥∥∥∥∫
ST

(
I3−

rrH

r2

)
e−jκT(ϕ,φ)sθk(s) ds

∥∥∥∥2

dω

≤ lim
r→∞

κ2
0Z0

32π2

∫
Ω

∫
ST

∥∥∥∥(I3 −
rrH

r2

)
e−jκT(ϕ,φ)s

∥∥∥∥2

dsdω

×
K∑

k=1

∫
ST

∥θk (s)∥2ds (51)

where Cauchy-Schwarz inequality is applied to the right side
of the equality to derive its upper bound. It can be observed
from (51) that, the component related to r is limited when
r →∞, i.e.,

0 < lim
r→∞

∫
Ω

∫
ST

∥∥∥∥(I3 −
rrH

r2

)
e−jκT(ϕ,φ)s

∥∥∥∥2

dsdω < ∞.

(52)

Therefore, the physical radiation power of CAP-MIMO can
be upper-bounded by the component in (51) unrelated to r,
written as

K∑
k=1

∫
ST

∥θk (s)∥2ds ≤ PT, (53)

which completes the proof.

APPENDIX B
PROOF OF LEMMA 3

Obviously, the optimal solution to Ps in (20) is achieved
when

∫
ST
∥θ (s)∥2ds = PT. Thus, by applying Cauchy-

Schwarz inequality for the objective of problem Ps in (20),
we obtain

γ =

∣∣∣ψH
∫
ST

G(s)θ (s) ds
∣∣∣2

ψHψσ2

(a)

≤

∣∣∣∣∫ST

∥∥∥ψHG(s)
∥∥∥2

ds
∣∣∣∣ ∣∣∣∫ST

∥θ (s)∥2ds
∣∣∣

ψHψσ2

= PT

∫
ST

∥∥∥ψHG(s)
∥∥∥2

ds

ψHψσ2
, (54)
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where equality (a) holds when

θ (s) =
√

PT
GH(s)ψ√∫

ST
∥GH(s′)ψ∥2ds′

(55)

Thus, problem Ps in (20) can be equivalently reformulated as

max
ψ

γ = PT

∫
ST

∥∥∥ψHG(s)
∥∥∥2

ds

ψHψσ2

= PT

ψH
(∫
ST

G(s)GH(s)ds
)
ψ

ψHψσ2
. (56)

It is a standard Rayleigh quotient thus γ can be maximized
when combiner ψ takes the eigenvector corresponding to the
maximum eigenvalue of matrix

∫
ST

G(s)GH(s)ds, written as

ψ =
ξmax

{∫
ST

G(s)GH(s)ds
}

∥∥∥ξmax

{∫
ST

G(s)GH(s)ds
}∥∥∥ . (57)

Then, the pattern design scheme in (22) can be obtained by
substituting (57) into (55) and γopt in (21) can be obtained
by substituting (22) into (20), which completes the proof.

APPENDIX C
PROOF OF LEMMA 4

For simplifying notations, here we define
∑∞

n=N+1 =∑∞
n −

∑N
n . Then, the full derivation process of Lemma 4 is

summarized as follows.
Firstly, by substituting γopt in (23) and γ̂ in (26) into ∆ =

γopt − γ̂, we obtain:

∆ =
2
σ2
ℜ


( ∞∑

n

Ωnwn

)H( ∞∑
n=N+1

Ωnwn

)
− 1

σ2

∥∥∥∥∥
∞∑

n=N+1

Ωnwn

∥∥∥∥∥
2

(a)

≤ 2
σ2

∥∥∥∥∥
∞∑
n

Ωnwn

∥∥∥∥∥
∥∥∥∥∥

∞∑
n=N+1

Ωnwn

∥∥∥∥∥− 1
σ2

∥∥∥∥∥
∞∑

n=N+1

Ωnwn

∥∥∥∥∥
2

(b)

≤ 1
σ2

∥∥∥∥∥
∞∑
n

Ωnwn

∥∥∥∥∥
∥∥∥∥∥

∞∑
n=N+1

Ωnwn

∥∥∥∥∥
+

1
σ2

∥∥∥∥∥
N∑
n

Ωnwn

∥∥∥∥∥
∥∥∥∥∥

∞∑
n=N+1

Ωnwn

∥∥∥∥∥ (58)

where inequality (a) follows since ℜ
{
zHy

}
≤ ∥z∥ ∥y∥ and

(b) follows since ∥z∥−∥y∥ ≤ ∥z− y∥. Then, by substituting
wn in (24) as well as θ(s) and ψ in (22) into (58), we obtain:

∆

≤ 1
σ2AT

PT∫
Vs
∥GH(s)ψ∥2ds

∥∥∥∥∥
∫
ST

∞∑
n

ΩnΨn(s)GH(s)ψds

∥∥∥∥∥

×

∥∥∥∥∥
∫
ST

∞∑
n=N+1

ΩnΨn(s)GH(s)ψds

∥∥∥∥∥
+

1
σ2AT

PT∫
Vs
∥GH(s)ψ∥2ds

∥∥∥∥∥
∫
ST

N∑
n

ΩnΨn(s)GH(s)ψds

∥∥∥∥∥
×

∥∥∥∥∥
∫
ST

∞∑
n=N+1

ΩnΨn(s)GH(s)ψds

∥∥∥∥∥ . (59)

Next, by utilizing Cauchy-Schwarz inequality
∥∥∥∫ST

zHyds
∥∥∥ ≤√∫

ST
∥z∥2ds

√∫
ST
∥y∥2ds, we further obtain

∆ ≤ PT

σ2AT

√√√√∫
ST

∥∥∥∥∥
∞∑
n

ΩnΨn(s)

∥∥∥∥∥
2

ds

×

√√√√∫
ST

∥∥∥∥∥
∞∑

n=N+1

ΩnΨn(s)

∥∥∥∥∥
2

ds

+
PT

σ2AT

√√√√∫
ST

∥∥∥∥∥
N∑
n

ΩnΨn(s)

∥∥∥∥∥
2

ds

×

√√√√∫
ST

∥∥∥∥∥
∞∑

n=N+1

ΩnΨn(s)

∥∥∥∥∥
2

ds

(a)

≤ PT

σ2

√√√√ ∞∑
n

∥Ωn∥2
√√√√ ∞∑

n=N+1

∥Ωn∥2

+
PT

σ2

√√√√ N∑
n

∥Ωn∥2
√√√√ ∞∑

n=N+1

∥Ωn∥2. (60)

where (a) follows since ∥
∑

z∥ ≤
∑
∥z∥. Finally, the upper

bound of ∆ can be derived as

∆
(a)

≤ PT

σ2

√√√√ ∞∑
n

∥Ωn∥2F

√√√√ ∞∑
n=N+1

∥Ωn∥2F

+
PT

σ2

√√√√ N∑
n

∥Ωn∥2F

√√√√ ∞∑
n=N+1

∥Ωn∥2F

(b)
=

PT

σ2

√√√√ ∞∑
n

∥Ωn∥2F

√√√√(1− η)
∞∑
n

∥Ωn∥2F

+
PT

σ2

√√√√η
∞∑
n

∥Ωn∥2F

√√√√(1− η)
∞∑
n

∥Ωn∥2F

(c)
=

PT

σ2

√
1− η (1 +

√
η)
∫
ST

∥G(s)∥2F ds, (61)
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where (a) follows since ∥z∥ ≤ ∥z∥F; (b) holds since η =∑N
n ∥Ωn∥2F

/∑∞
n ∥Ωn∥2F; and (c) holds according to Parse-

val’s theorem shown in (16). This completes the proof.
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